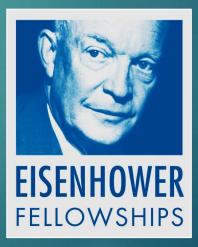
FHWA FELLOWSHIP: EISENHOWER DEEP BEAM

PRESENTED BY: ALEJANDRA QUESADA

<u>Contents</u>

Project Requirements Project Description Background Information Design Selection Testing and Analysis Cost of Implementing Design Summary of Project Costs Impacts



FHWA Requirements

- Project Proposal
- Abstract Submittal
- Poster Presentation
- Attendance at TRB conference in Washington D.C.
- Final Report of Findings

Project Description

Objective: To quantify the amount of steel fibers necessary to supplement the conventional reinforcement required for deep beams by AASHTO

Testing for crack width sizes

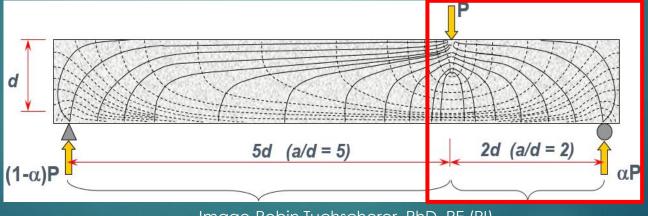
To meet FHWA requirements

4

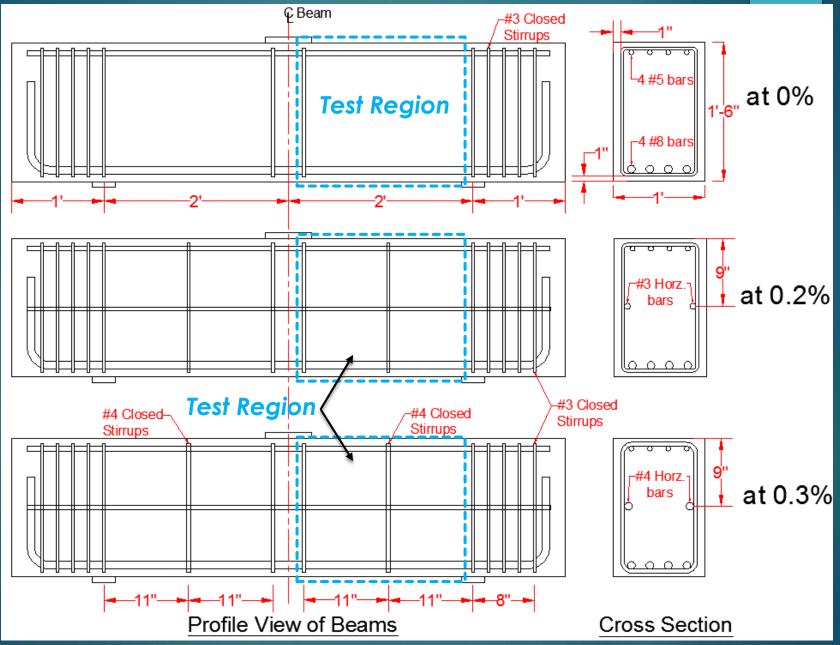
Deep Beam

Propex Novocon 1050 Fibers From Google Images

Background


What is a deep beam?

Has a low span-to-depth ratio


▶ (a/d) < 2.0

"Serviceability performance" is quantified as the rate of growth of the width of the maximum diagonal crack

Demand for deep beam research

<u>Beam Designs</u>

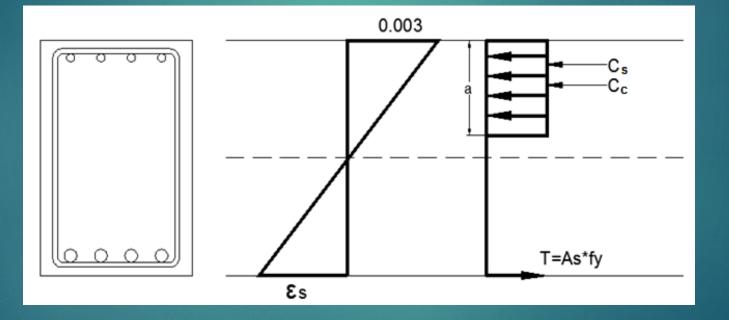
Design Variables

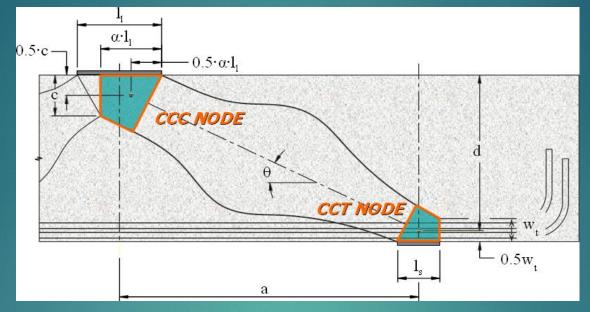
The maximum diagonal crack width will be measured for all specimens at multiple load increments up to approximately 75% of their ultimate capacity

SPECIMEN	TRANVERSE	FIBER		
	REINFORCEMENT	PERCENTAGE		
	RATIO			
1	0.3% each way			
2	0.2% each way	0%		
3	0% each way			
4	0.3% each way			
5	0.2% each way	0.5%		
6	0% each way			
7	0.3% each way			
8	0.2% each way	1.0%		
9	0% each way			

Fabrication

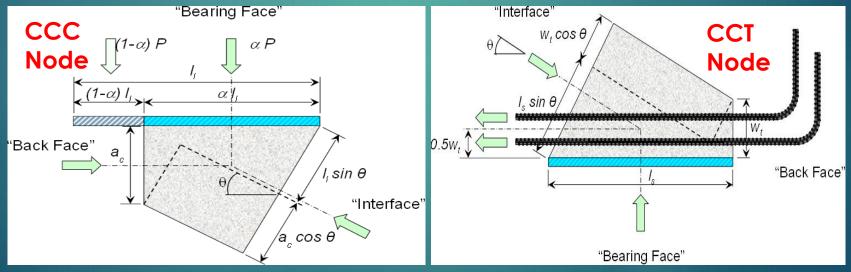
Formwork
Tie Rebar Cages
Placement of Concrete
Curing Process




<u>Beam Failure Analysis</u>

Done before testing beams

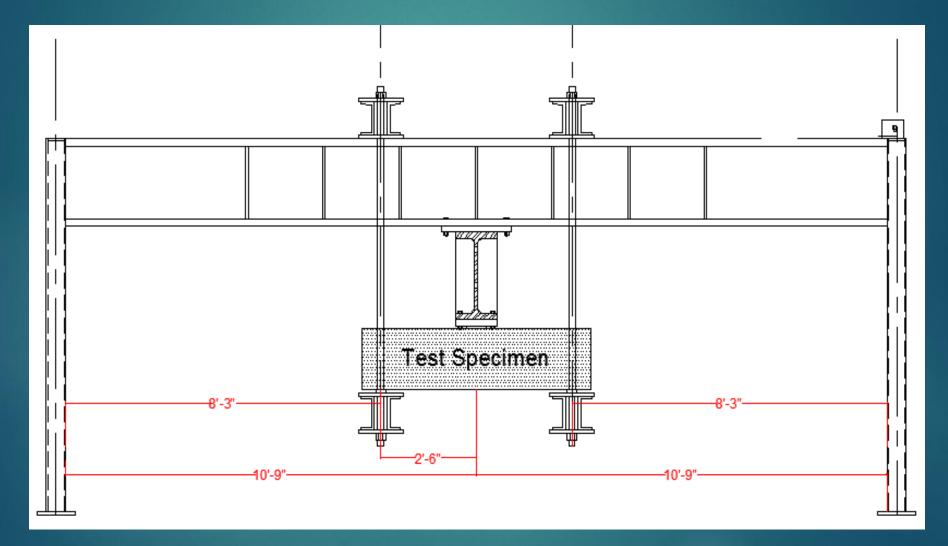
For determining the strength of a beam before a bending or flexural failure



Beam Failure Analysis

10

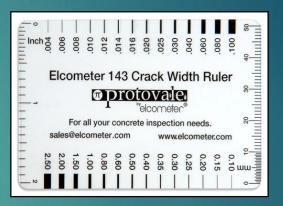
Deep Beam


All Images-Robin Tuchscherer, PhD, PE (PI)

Testing and Analysis

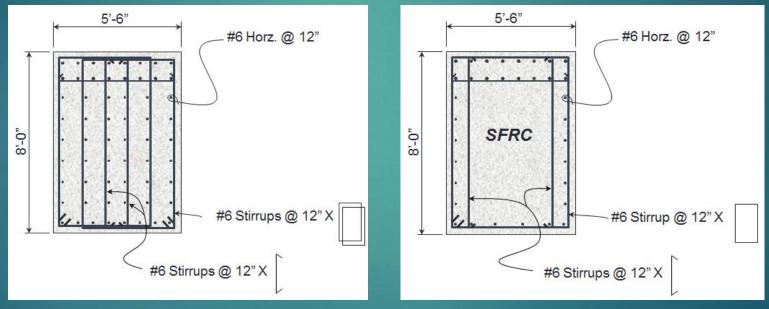
The lowest shear strength value determined was 106.97 kips

Shear Strength Equations	Resulting Shear Value, Vn		
Vn = f _{ce} *A _{nz} =0.85(1.0)(4.38ksi)(3'')(12'')	133.93 kips		
Vn/tan 0 = f _{ce} *A _{nz} =0.85(1.0)(4.38ksi)(2.98'')(12'')	189.29 kips		
Vn/sin 0 = f _{ce} *A _{nz} =0.85(0.75)(4.38ksi)(12'')(5.02)	168.20 kips		
Vn/sin 0 = f _{ce} *A _{nz} =0.85(0.6)(4.38ksi)(5.02)(12'')	134.56 kips		
Vn = f _{ce} *A _{nz} =0.85(0.8)(4.38ksi)(3")(12")	106.97 kips		
Vn/tan0 = fy*As = (60ksi)(3.16 in²)	189.6 kips		
Vn/sin0 = f _{ce} *A _{nz} =0.85(0.6)(4.38ksi)(4.78)(12'')	127.98 kips		


Testing-Setup

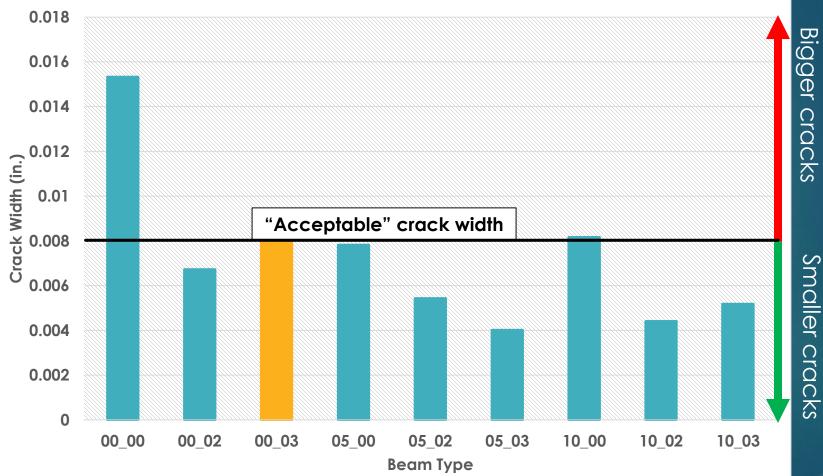
Testing-Setup

165 KIPS


Widths of any cracks created within the test region will be measured using a crack width ruler

13

Prediction

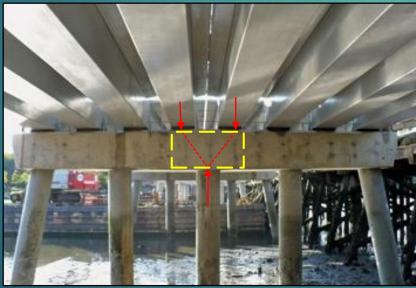

The effect of incorporating steel fibers within a concrete mix design could potentially result in smaller crack widths and a reduction in the complexity of fabrication.

Images-Robin Tuchscherer, PhD, PE (PI)

<u>Results</u>

Measured Crack Widths (P=100 kips)

= AASHTO LRFD req'd stirrups


Results are good!

Summary of Project Costs

	Personnel	Hours	Billable	e Rate,	\$/hr	Cost, \$	
	Senior Engineer	45	\$98.00		\$4,410.0	Dee	
	Designer/Drafter	20	\$36.00		\$720.00	Deep Beam	
	Construction Worker	r 80 .		\$29.00		\$2,320.00	€am
	Lab Technician	36	\$36.00		\$1,296.00		
	Analyst	30	\$29.00		\$870.00		
			Т	OTAL		\$9,616	
ITEM		CC	ST				
wood		\$700	0.00				
steel		\$600.00					
insulating blankets		\$170.00			Total Cost of Project= \$13,696		
concrete vibrator (rental)		\$130.00					
concrete		\$450.00				<u> 313,07</u>	<u>o</u>
	steel fibers	\$460	0.00				
	Bolsters	\$50	.00				
	Lifting Inserts	\$20	.00				
	travel expenses	\$1,50	00.00				
	TOTAL	\$4,0	080				

<u>Impacts</u>

- Average lifespan= 50 years; Actual= 43 years
- Safety, serviceability, and longevity
- To potentially reduce costs of infrastructure repairs and bridge restoration; more economical

http://https://www.fhwa.dot.gov/publications/publicroads/11julaug/04.cfm/

http://reganwolfrom.wordpress.com/2010/05/05/disr aeli-project-an-unnecessary-expropriation/

<u>Acknowledgements</u>

- Federal Highways Administration (FHWA)
- Dr. Robin Tuchscherer (Technical Advisor)
- Dr. Jun Ho (Project Manager)
- CEMEX
- 🕨 Braedan Hinojosa
- Reinforced Concrete class-Fall 2013

18

U.S. Department of Transportation Federal Highway

Administration

19

Deep Beam

ANY QUESTIONS ???